Algebraic Number Theory Exercise Sheet 11

Prof. Dr. Nikita Geldhauser	Winter Semester 2024-25
PD Dr. Maksim Zhykhovich	16.01.2025

Exercise 1. For every square-free positive integer d compute the group of units \mathcal{O}_K^* , where $K = \mathbb{Q}[\sqrt{-d}]$. *Hint:* Recall that $x \in K$ is a unit if and only if $x \in \mathcal{O}_K$ and $N_{\mathbb{Q}}^K(x) = \pm 1$ (see Exercise 3, Sheet 2).

Exercise 2. Let ζ_5 be a primitive 5th root of unity, let $K = \mathbb{Q}(\zeta_5)$. (1) Show that $1 + \zeta_5 \in \mathcal{O}_K^*$.

(2) Let H be the subgroup in \mathcal{O}_K^* generated by $1 + \zeta_5$. Show that \mathcal{O}_K^*/H is finite.

Exercise 3. Let $K = \mathbb{Q}[\sqrt{d}] \subset \mathbb{R}$ be a real quadratic field, where d is a square-free positive integer. Let A be the ring of integers of K.

(0) Show that the subgroup $H = A^* \cap]0, +\infty[$ of A^* is isomorphic to \mathbb{Z} . Deduce that there is only one generator of H which is greater than 1. We call this generator the fundamental unit.

(1) Let $v = a + b\sqrt{d} \in A^*$, $a, b \in \mathbb{Q}$. Show that v > 1 if and only if a > 0 and b > 0.

(2) Let $u = \min\{v \in A^* | v > 1\}$. Show that u is the fundamental unit of K.

(3) For every positive integer n, let $u^n = a_n + b_n \sqrt{d}$, $a_n, b_n \in \mathbb{Q}$. Show that the sequence $\{b_n\}$ is increasing.

(4) Find the fundamental unit u > 1 for d = 2, 5, 7.

Hint: Use (3) and the description of A.

(5) Suppose that the fundamental unit u > 1 is known. Describe the positive integer solutions of Pell-Fermat equations: $x^2 - dy^2 = 1$ and $x^2 - dy^2 = -1$

Hint: Consider the two cases: $d \not\equiv 1 \mod 4$ and $d \equiv 1 \mod 4$.

(6) Describe the positive integer solutions of Pell-Fermat equations for d = 2, 5, 7.